加微信heibaifk,网盘停止更新

04讲深入浅出索引(上)

提到数据库索引,我想你并不陌生,在日常工作中会经常接触到。比如某一个SQL查询比较慢,分析完原因之后,你可能就会说“给某个字段加个索引吧”之类的解决方案。但到底什么是索引,索引又是如何工作的呢?今天就让我们一起来聊聊这个话题吧。

数据库索引的内容比较多,我分成了上下两篇文章。索引是数据库系统里面最重要的概念之一,所以我希望你能够耐心看完。在后面的实战文章中,我也会经常引用这两篇文章中提到的知识点,加深你对数据库索引的理解。

一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。一本500页的书,如果你想快速找到其中的某一个知识点,在不借助目录的情况下,那我估计你可得找一会儿。同样,对于数据库的表而言,索引其实就是它的“目录”。

索引的常见模型

索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。

下面我主要从使用的角度,为你简单分析一下这三种模型的区别。

哈希表是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的值即key,就可以找到其对应的值即Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。

不可避免地,多个key值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

图1 哈希表示意图

图中,User2和User4根据身份证号算出来的值都是N,但没关系,后面还跟了一个链表。假设,这时候你要查ID_card_n2对应的名字是什么,处理步骤就是:首先,将ID_card_n2通过哈希函数算出N;然后,按顺序遍历,找到User2。

需要注意的是,图中四个ID_card_n的值并不是递增的,这样做的好处是增加新的User时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

你可以设想下,如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍了。

所以,哈希表这种结构适用于只有等值查询的场景,比如Memcached及其他一些NoSQL引擎。

有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

图2 有序数组示意图

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查ID_card_n2对应的名字,用二分法就可以快速得到,这个时间复杂度是O(log(N))。

同时很显然,这个索引结构支持范围查询。你要查身份证号在[ID_card_X, ID_card_Y]区间的User,可以先用二分法找到ID_card_X(如果不存在ID_card_X,就找到大于ID_card_X的第一个User),然后向右遍历,直到查到第一个大于ID_card_Y的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是2017年某个城市的所有人口信息,这类不会再修改的数据。

二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:

图3 二叉搜索树示意图

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查ID_card_n2的话,按照图中的搜索顺序就是按照UserA -> UserC -> UserF -> User2这个路径得到。这个时间复杂度是O(log(N))。

当然为了维持O(log(N))的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是O(log(N))。

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

你可以想象一下一棵100万节点的平衡二叉树,树高20。一次查询可能需要访问20个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要10 ms左右的寻址时间。也就是说,对于一个100万行的表,如果使用二叉树来存储,单独访问一个行可能需要20个10 ms的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。

以InnoDB的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,就可以存1200的3次方个值,这已经17亿了。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

不管是哈希还是有序数组,或者N叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表、LSM树等数据结构也被用于引擎设计中,这里我就不再一一展开了。

你心里要有个概念,数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。

截止到这里,我用了半篇文章的篇幅和你介绍了不同的数据结构,以及它们的适用场景,你可能会觉得有些枯燥。但是,我建议你还是要多花一些时间来理解这部分内容,毕竟这是数据库处理数据的核心概念之一,在分析问题的时候会经常用到。当你理解了索引的模型后,就会发现在分析问题的时候会有一个更清晰的视角,体会到引擎设计的精妙之处。

现在,我们一起进入相对偏实战的内容吧。

在MySQL中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。由于InnoDB存储引擎在MySQL数据库中使用最为广泛,所以下面我就以InnoDB为例,和你分析一下其中的索引模型。

InnoDB 的索引模型

在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。

每一个索引在InnoDB里面对应一棵B+树。

假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引。

这个表的建表语句是:

mysql> create table T(
id int primary key, 
k int not null, 
name varchar(16),
index (k))engine=InnoDB;

表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6),两棵树的示例示意图如下。

图4 InnoDB的索引组织结构

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。

主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)。

根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

  • 如果语句是select * from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;
  • 如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行ID值为700,则只需要在R5的记录后面插入一个新记录。如果新插入的ID值为400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果R5所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

基于上面的索引维护过程说明,我们来讨论一个案例:

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。

插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。

也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?

由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约20个字节,而如果用整型做主键,则只要4个字节,如果是长整型(bigint)则是8个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:

  1. 只有一个索引;

  2. 该索引必须是唯一索引。

你一定看出来了,这就是典型的KV场景。

由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。

这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

小结

今天,我跟你分析了数据库引擎可用的数据结构,介绍了InnoDB采用的B+树结构,以及为什么InnoDB要这么选择。B+树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数。

由于InnoDB是索引组织表,一般情况下我会建议你创建一个自增主键,这样非主键索引占用的空间最小。但事无绝对,我也跟你讨论了使用业务逻辑字段做主键的应用场景。

最后,我给你留下一个问题吧。对于上面例子中的InnoDB表T,如果你要重建索引 k,你的两个SQL语句可以这么写:

alter table T drop index k;
alter table T add index(k);

如果你要重建主键索引,也可以这么写:

alter table T drop primary key;
alter table T add primary key(id);

我的问题是,对于上面这两个重建索引的作法,说出你的理解。如果有不合适的,为什么,更好的方法是什么?

你可以把你的思考和观点写在留言区里,我会在下一篇文章的末尾给出我的参考答案。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上一篇文章末尾给你留下的问题是:如何避免长事务对业务的影响?

这个问题,我们可以从应用开发端和数据库端来看。

首先,从应用开发端来看:

  1. 确认是否使用了set autocommit=0。这个确认工作可以在测试环境中开展,把MySQL的general_log开起来,然后随便跑一个业务逻辑,通过general_log的日志来确认。一般框架如果会设置这个值,也就会提供参数来控制行为,你的目标就是把它改成1。

  2. 确认是否有不必要的只读事务。有些框架会习惯不管什么语句先用begin/commit框起来。我见过有些是业务并没有这个需要,但是也把好几个select语句放到了事务中。这种只读事务可以去掉。

  3. 业务连接数据库的时候,根据业务本身的预估,通过SET MAX_EXECUTION_TIME命令,来控制每个语句执行的最长时间,避免单个语句意外执行太长时间。(为什么会意外?在后续的文章中会提到这类案例)

其次,从数据库端来看:

  1. 监控 information_schema.Innodb_trx表,设置长事务阈值,超过就报警/或者kill;

  2. Percona的pt-kill这个工具不错,推荐使用;

  3. 在业务功能测试阶段要求输出所有的general_log,分析日志行为提前发现问题;

  4. 如果使用的是MySQL 5.6或者更新版本,把innodb_undo_tablespaces设置成2(或更大的值)。如果真的出现大事务导致回滚段过大,这样设置后清理起来更方便。

感谢 @壹笙☞漂泊 @王凯 @易翔 留下的高质量评论。

精选留言

  • Christain
    老师,索引篇结束了么?
    有几个问题
    1 :三个字段联合索引时,如果中间的字段使用了范围查询或者模糊查询,最后一个字段还会用到索引么?
    2:在order by时,索引是如何使用的
    3:新建一张表,如何界定其索引的数量,有没有选择或者公式
    4:能不能再详细介绍下字符串前缀索引
    2018-11-23 09:09
    作者回复

    理论篇的先到这里,实践篇的还有六篇索引相关。
    1. 我们文中有这样的例子了哦。like “张%” 就是对name 字段的范围查询/模糊查询。 age 就是你说的最后一个字段啦 😄
    2. 我们有两篇的篇幅来讲order by, 第14和16(15是答疑)
    3. 根据查询需要😓
    4. 等《如何给字符串字段加索引》发布哈

    嗯索引的内容其实很多,基础篇两篇是不可能写完的,而且怕理论类太多大家读着累,把一些知识点放到实践篇了 @all

    2018-11-23 09:56

  • JackPn
    老师我可不可以理解为:每一张表其实就是一个B+树,树结点的key值就是某一行的主键,value是该行的其他数据。新建索引就是新增一个B+树,查询不走索引就是遍历主B+树。
    2018-11-27 20:06
    作者回复

    每一个表是好几棵B+树(应该是你理解对了但是手误),
    其它的完全正确

    2018-11-27 20:55

  • wuxue_123
    老师,回表只是普通索引才会有的吗?主键和数据放在同一个树中,根据主键查询的时候,就可以直接获得数据了。
    那select *from table where id=xx
    和select id from table where id=xx
    的效率是一样的吗?(id是主键)
    2018-12-20 06:39
    作者回复

    这两个语句是都不用回表了,在“查找行”这个逻辑上是一样的,

    但是select *要读和拷贝更多列到server,还要发送更多列给客户端,所以还是select id更快的。

    好问题

    2018-12-20 10:00

  • 壹笙☞漂泊
    总结:
    1.索引的作用:提高数据查询效率
    2.常见索引模型:哈希表、有序数组、搜索树
    3.哈希表:键 - 值(key - value)。
    4.哈希思路:把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置
    5.哈希冲突的处理办法:链表
    6.哈希表适用场景:只有等值查询的场景
    7.有序数组:按顺序存储。查询用二分法就可以快速查询,时间复杂度是:O(log(N))
    8.有序数组查询效率高,更新效率低
    9.有序数组的适用场景:静态存储引擎。
    10.二叉搜索树:每个节点的左儿子小于父节点,父节点又小于右儿子
    11.二叉搜索树:查询时间复杂度O(log(N)),更新时间复杂度O(log(N))
    12.数据库存储大多不适用二叉树,因为树高过高,会适用N叉树
    13.InnoDB中的索引模型:B+Tree
    14.索引类型:主键索引、非主键索引
    主键索引的叶子节点存的是整行的数据(聚簇索引),非主键索引的叶子节点内容是主键的值(二级索引)
    15.主键索引和普通索引的区别:主键索引只要搜索ID这个B+Tree即可拿到数据。普通索引先搜索索引拿到主键值,再到主键索引树搜索一次(回表)
    16.一个数据页满了,按照B+Tree算法,新增加一个数据页,叫做页分裂,会导致性能下降。空间利用率降低大概50%。当相邻的两个数据页利用率很低的时候会做数据页合并,合并的过程是分裂过程的逆过程。
    17.从性能和存储空间方面考量,自增主键往往是更合理的选择。

    思考题:
    如果删除,新建主键索引,会同时去修改普通索引对应的主键索引,性能消耗比较大。
    删除重建普通索引貌似影响不大,不过要注意在业务低谷期操作,避免影响业务。



    2018-11-21 14:28
    作者回复

    优秀

    2018-11-21 14:50

  • 约书亚
    “N叉树”的N值在MySQL中是可以被人工调整的么?曾经面试被问到过这问题,当时就懵逼了...
    2018-11-21 08:49
    作者回复

    面试中题面越简单的问题越暗藏凶险,可见一斑…

    可以按照调整key的大小的思路来说;

    如果你能指出来5.6以后可以通过page大小来间接控制应该能加分吧

    面试回答不能太精减,计算方法、前缀索引什么的一起上😄



    2018-11-21 14:40

  • 张良
    结合王争的数据结构与算法看正好
    2018-11-21 09:58
  • 路过
    顺序应是先删除k列索引,主键索引。然后再创建主键索引和k列索引。

    2018-11-21 09:49
  • 张先先森森森
    drop主键索引会导致其他索引失效,但drop普通索引不会。
    2018-11-21 07:24
  • 唐堂@贝壳找房
    @约书亚 的问题:““N叉树”的N值在Mysql是否可以被调整?” ,老师能否在稍微详细点指导下? 谢谢老师了
    2018-11-21 20:55
  • 高枕
    我来回答这个问题
    你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。

    这里有点不理解,为什么树高20就是20个数据块?


    每个叶子结点就是一个块,每个块包含两个数据,块之间通过链式方式链接。树高20的话,就要遍历20个块
    2018-11-21 12:33
    作者回复

    👍🏿,多谢

    多补一句,因为是二叉树结构,每次指针查找很大概率是触发随机磁盘读(比如很难刚好碰上一个节点和他的左右儿子刚好相邻)

    2018-11-21 13:45

  • Richie
    二级索引重建应该新建索引再做删除,如果有查询用到这个索引,此时索引已被删除,会导致业务抖动.主键重建不能采用drop这种方式去按操作,因为所有数据都是以主键组织的,删了主键后,InnoDB会自己找一个主键组织数据,再次添加主键又会重新组织数据,重建表的次已达二次,我们可以直接Optimiz这个表
    2018-11-21 03:57
  • Geek_5b3ccb
    请问没有主键的表,有一个普通索引。怎么回表?
    2018-11-21 09:25
    作者回复

    没有主键的表,innodb会给默认创建一个Rowid做主键

    2018-11-21 14:11

  • monkay
    你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。

    这里有点不理解,为什么树高20就是20个数据块?
    2018-11-21 08:53
    作者回复

    后面有同学答复你了😄

    2018-11-21 14:25

  • 滩涂曳尾
    老师我有2个问题,问题1是上一节遗留的没来得及问:
    1. 在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。这句话能具体说明吗?
    2. 访问磁盘和内存索引涉及磁盘(sata,ssd,nvm)读写性能,以及内存读写性能,可否给一些数值方便直观认识?
    2018-11-21 07:42
    作者回复

    1. 就是语句开始执行前创建一个read-view

    2. 我估计你要的是这个:
    T his group of numbers is from a presentation Jeff Dean gave at a Engineering All-Hands Meeting at Google.

    L1 cache reference 0.5 ns
    Branch mispredict 5 ns
    L2 cache reference 7 ns
    Mutex lock/unlock 100 ns
    Main memory reference 100 ns
    Compress 1K bytes with Zippy 10,000 ns
    Send 2K bytes over 1 Gbps network 20,000 ns
    Read 1 MB sequentially from memory 250,000 ns
    Round trip within same datacenter 500,000 ns
    Disk seek 10,000,000 ns
    Read 1 MB sequentially from network 10,000,000 ns
    Read 1 MB sequentially from disk 30,000,000 ns
    Send packet CA->Netherlands->CA 150,000,000 ns

    2018-11-22 00:38

  • 大王拍我去巡山
    老师你好:之前看过一遍文章,一直有疑惑:一个innoDB引擎的表,数据量非常大,根据二级索引搜索会比主键搜索快,文章阐述的原因是主键索引和数据行在一起,非常大搜索慢,我的疑惑是:通过普通索引找到主键ID后,同样要跑一边主键索引,还望老师解惑。。。
    2018-11-21 09:52
    作者回复

    问出这个问题表示你今天的文章看明白了👍🏿

    看完明天的(下),我估计你就有答案了

    2018-11-21 14:04

  • Richie
    老师索引只能定位到page,page内部怎么去定位行数据
    2018-11-21 16:42
    作者回复

    内部有个有序数组,二分法

    2018-11-21 17:48

  • 老师请问下:
    1、如果插入的数据是在主键树叶子结点的中间,后面的所有页如果都是满的状态,是不是会造成后面的每一页都会去进行页分裂操作,直到最后一个页申请新页移过去最后一个值
    2、还有之前看到过说是插入数据如果是在某个数据满了页的首尾,为了减少数据移动和页分裂,会先去前后两个页看看是否满了,如果没满会先将数据放到前后两个页上,不知道是不是有这种情况
    2018-11-21 11:13
    作者回复

    1. 不会不会,只会分裂它要写入的那个页面。每个页面之间是用指针串的,改指针就好了,不需要“后面的全部挪动

    2. 对,减为了增加空间利用率

    2018-11-21 13:56

  • 大王拍我去巡山
    希望老师讲一个联合索引在B+树中的存储方式
    2018-11-21 09:53
    作者回复

    哎呀,下一篇就是😄

    2018-11-21 14:02

  • jacket
    【今日收获】
    1. 主键索引的叶子结点存储了整一行的内容(聚簇索引),使用主键可以快速获取到整行的数据。
    2. 非主键索引的叶子结点存储的是主键的值,所以主键字段占用空间不宜过大。同时,其查找数据的过程称为“回表”,需要先查找自己得到主键值,再在主键索引上边查找数据内容。
    3. 索引的实现由存储引擎来决定,InnoDB使用B+树(N叉树,比如1200叉树),把整颗树的高度维持在很小的范围内,同时在内存里缓存前面若干层的节点,可以极大地降低访问磁盘的次数,提高读的效率。
    4. B+树的插入可能会引起数据页的分裂,删除可能会引起数据页的合并,二者都是比较重的IO消耗,所以比较好的方式是顺序插入数据,这也是我们一般使用自增主键的原因之一。
    5. 在Key-Value的场景下,只有一个索引且是唯一索引,则适合直接使用业务字段作为主键索引。
    2018-11-22 12:56
    作者回复

    赞👍🏿

    2018-11-22 15:29

  • 到道可道
    由于索引中存储的是主键的key值,那么重建主键时,不但会重建主键,所有的普通索引也会重新构建,所以通常不建议重建索引,无普通索引的除外。
    2018-11-21 08:30